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Wheeler Propagator
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We study the half-advanced and half-retarded Wheeler Green function and its
relation to Feynman propagators, first for massless equation, then, for
Klein±Gordon equations with arbitrary mass parameters, real, imaginary, or
complex. In all cases the Wheeler propagator lacks an on-shell free propagation.
The Wheeler function has support inside the light-cone (whatever the mass).
The associated vacuum is symmetric with respect to annihilation and creation
operators. We show with some examples that perturbative unitarity holds,
whatever the mass (real or complex). Some possible applications are discussed.

1. INTRODUCTION

More than half a century ago, Wheeler and Feynman (1945) represented

electromagnetic interactions by means of a half advanced and half retarded

potential. The charged medium was suppossed to be a perfect absorber, so
that no radiation could possibly escape the system. We are going to call this

kind of potential a ª Wheeler functionº (or propagator), although it had been

used before by Dirac (1938) when trying to avoid some runaway solutions.

Later, Wheeler and Feynman (1949) showed that, in spite of the fact that it

contains an advanced part, the results do not contradict causality.
Of course, the success of QED and renormalization theory soon made

it unnecesary or not advisable to follow that line of research (at least for

electromagnetism).

One of the distinctive characteristics of the Green function used in

Wheeler and Feynman (1945, 1949) and Dirac (1938) is its lack of asymptotic

free waves. This is the reason behind the choice of a ª perfect absorberº for

1 Departamento de FiÂsica, Fac. de Ciencias Exactas, Universidad Nacional de La Plata, C.C.
67 (1900) La Plata, Argentina.

2 Departamento de MatemaÂticas, Fac. de Ciencias Exactas, Universidad Nacional del Centro
de la Pcia de Bs. As., Pintos 390, C.P. 7000, Tandil, Argentina.

2877

0020-7748/98/1100-287 7$15.00/0 q 1998 Plenum Publishing Corporation



2878 Bollini and Rocca

the medium through which the field propagates. As the quantization of free

waves is associated with free particles, the above-mentioned feature of

Wheeler functions implies that no free quantum of the field can ever be
observed. Nevertheless, we are now used to the existence of confined particles.

They do not manifest themselves as free entities. We can give some examples

(outside QCD) where such a behavior can be present.

A Lorentz-invariant higher order equation can be decomposed into

Klein±Gordon factors, but the corresponding mass parameters need not be

real. For instance, the equation

(N2 1 m 4) w 5 (N 1 im2)(N 2 im2) w 5 0 (1)

gives rise to a pair of constituent fields (Barci et al., 1994a) obeying

(N 6 im2) w 6 5 0 (2)

Any solution of (2) blows up asymptotically. We can say that the corres-

ponding fields should be forbidden to appear asymptotically as free waves.
Therefore, they should have a Wheeler function as propagator (Bollini and

Oxman, 1992).

Equations similar to (1), or more generally

(Nn 6 m 2n) w 5 0 (3)

appear in a natural way in supersymmetric models for higher dimensional

spaces (Bollini and Giambiagi, 1985).
Another example is provided by fields obeying Klein±Gordon equations

with the wrong sign of the mass term. A careful analysis shows that the

propagator should be a Wheeler function (Barci et al., 1993, 1994b). Accord-

ingly, no tachyon can ever be observed as a free particle. They can only exist

as ª mediatorsº of interactions.
To define the propagators in a proper way, we have to solve the equations

for the Green functions, with suitable boundary conditions.

For the wave equation

NGÄ (x) 5 d (x) (4)

a Fourier transformation gives

G ( p) 5 (
-

p 2 2 p 2
0)

2 1 [ ( p m p m ) 2 1 [ P 2 1 (5)

Of course, it is necessary to specify the nature of the singularity. Different
determinations imply different types of Green functions. For the classical

solution of (4) it is natural to use the retarded function (GÄ rt). It corresponds

to the propagation toward the future of the effect produced by the sources.

This function can be obtained by means of a Fourier transform of (5) in
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which the p0 integration is taken along a path from 2 ` to 1 ` , leaving the

poles to the right. In practice, we add to p0 a small, positive imaginary part:

Grt( p) 5 [
-

p 2 2 ( p0 1 i0)2] 2 1

(
-

p 2 2 p 2
0 2 i0 sgn p0)

2 1 5 (P 2 i0 sgn p0)
2 1 (6)

The advanced solution is the complex conjugate of (6):

Gad ( p) 5 (
-

p 2 2 p 2
0 1 i0 sgn p0)

2 1 5 (P 1 i0 sgn p0)
2 1 (7)

For the Feynman propagator we have to add a small imaginary part to

P (not just to p0):

G 6 ( p) 5 (P 6 i0) 2 1 (8)

and in the massive case

G 6 ( p) 5 (P 1 m 2 6 i0) 2 1 (9)

The Wheeler function is half advanced and half retarded. It is easy to

see that it is also half Feynman and half its conjugate (we will not use any

index for the Wheeler propagator):

G ( p) 5
1

2
G+( p) 1

1

2
G 2 ( p) (10)

On the real axis, the Wheeler function coincides with Cauchy’ s ª principal

valueº Green function, which is known to be zero on the mass-shell (no

free waves).

To perform convolution integrations in p space, we will utilize the

method presented in Bollini and Giambiagi (1996). Essentially, it consists in
the use of the Bochner theorem for the reduction of the Fourier transform

to a Hankel transform. The nucleus of this transformation is made to corre-

spond to an arbitrary number of dimensions n , taken as a free parameter. In

this way, starting with a given propagator in p space, we get a function in x
space whose singularity at the origin depends analytically on n . There is then

a range of values (of n ) such that the product of Green functions is allowed
and well determined.

In general, for a function f (P 6 i0) we have (Bollini and Giambiagi,

1996; Bochner, 1939):

^{ f(P 6 i0)} (x) 5 7
i

x n /2 #
`

0

dy y n /2f (y 2) )n /2 2 1 (xy) (11)
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where

x 5 (Q 7 i0)1/2

Q 5 r 2 2 x 2
0 5 x m x m

The r.h.s. of (11) is a Hankel transform of the function f (y 2) (Gradshteyn

and Ryzik, 1980; Erdelyi, 1954).

2. WHEELER FUNCTIONS

As a first example we take the massless case, for which (11) and

Gradshteyn and Ryzhik, (1980) and Guelfand and Shilov (1972) give

^{(P 6 i0) a } (x) 5 7 i22 a 1 n /2 G ( a 1 n /2)

G ( 2 a )
(Q 7 i0) 2 a 2 ( n /2) (12)

The massless Wheeler propagator is [cf. equation (10)]

P a 5
1

2
(P 1 i0) a 1

1

2
(P 2 i0) a (13)

Its Fourier transform is then

^{P a }(x) 5 i22 a 1 ( n /2) G ( a 1 n /2)

G ( 2 a )

3 F 1

2
(Q 1 i0) 2 a 2 ( n /2) 2

1

2
(Q 2 i0) 2 a 2 ( n /2) G (14)

But we also have the relation (Guelfand and Shilov, 1972)

(Q 6 i0) l 5 Q l
1 1 e 6 i p l Q l

2 (15)

where

Q l
1 5 H Q l Q . 0

0 Q # 0

Q l
2 5 H ( 2 Q) l Q , 0

0 Q $ 0

so that we can write (14) as

^{P a }(x) 5 22 a 1 ( n /2) G ( a 1 n /2)

G ( 2 a )
sin p 1 a 1

n
2 2 Q 2 a 2 ( n /2)

2 (16)

Equation (16) shows another interesting property of Wheeler functions.
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They are real and have support inside the light-cone of the coordinates.

Furthermore , for a 5 2 1, the trigonometric function tends to zero for n ®
4, but Q 1 2 ( n /2)

2 has a pole at n 5 4 with residue d (Q) (Faddeev and Slavnov,
1970). Then

^{P 2 1}(x) 5 d (Q) (17)

In four dimensions the massless Wheeler function is concentrated on

the light cone.

For the massive case the Wheeler propagator is

(P 1 m 2) 2 1 5
1

2
(P 1 m 2 1 i0) 2 1 1

1

2
(P 1 m 2 2 i0) 2 1 (18)

The Fourier transform of the Feynman propagators is (Guelfand and

Shilov, 1972)

^{(P 1 m 2 6 i0) 2 1} (x) 5 7 im n /2 2 1 [Q 1/2(1 2 n /2)
1 _ n /2 2 1(mQ1/2

1 )

1 i
p
2

Q 1/2(1 2 n /2)
2 * b

1 2 n /2 (mQ1/2
2 ]) (19)

where b 5 1 for the upper sign and b 5 2 for the lower sign.
Equations (18) and (19) give

^{(P 1 m 2) 2 1}(x) 5
p
2

m n /2 2 1Q 1/2(1 2 n /2)
2 )1 2 n /2(mQ1/2

2 ) (20)

Also for the massive case, the Wheeler function is zero outside the light-

cone. [For the definition of Bessel functions we follow Gradshteyn and

Ryzhik (1980, p. 951, 8.40).]
We can evaluate convolutions by means of the well-known convolution

theorem. The Fourier transform of a convolution is the product of the Fourier

transforms of each factor:

f ( p) * g ( p) 5 c^ 2 1{^{ f( p)}(x)^{g (p)}(x)}( p)

c 5 (2 p ) n /2 (21)

The product of distributions inside the curly brackets can be taken in a
suitable range of n and analytically extended to other values (Bollini and

Giambiagi, 1996).

The convolution of two Feynman functions gives another Feynman

function:

(P 2 i0) 2 1 ? (P 2 i0) 2 1 5 2ia( n ) (P 2 i0) n /2 2 2 (22)
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where

a ( n ) 5 c2 2 n /2 2 1 G 2 1 n2 2 1 2 G (2 2 n /2)

G ( n 2 2)

and a similar equation holds with i ® 2 i.
By using (16) and (21) we get for the Wheeler propagator

P 2 1 * P 2 1 5 a ( n ) tg p 1 n2 2 1 2 P n /2 2 2 (23)

where

a ( n ) 5 c2 2 n /2 2 1 G 2 1 n2 2 1 2 G (2 2 n /2)

G ( n 2 2)

Equation (22) shows a pole for n ® 4 (the usual ultraviolet divergence),

while (23) is well determined in that limit (the self-energy for Wheeler

propagator do not have ultraviolet divergence).

3. TACHYONS

A tachyon field obeys a Klein±Gordon equation with the wrong sign
of the ª massº term. The Green function is an inverse of P 2 m 2 (we use

m 2 5 2 m 2 for the ª massº of the tachyon). To find the corresponding Wheeler

function we go back to the original definition, namely, a half retarded and

half advanced propagator:

(P 2 m 2) 2 1 5
1

2
(P 2 m 2) 2 1

ad 1
1

2
(P 2 m 2) 2 1

rt (24)

The Fourier transform of the advanced part is

^{(P 2 m 2) 2 1
ad }(x) 5

1

(2 p ) n /2 # d n 2 1 p e i
-

p ?
-
r # ad

dp0

e 2 ip 0x0

-
p 2 2 p 2

0 2 m 2

where the path of integration runs parallel to the real axis and below both

poles of the integrand. For x0 . 0 the path can be closed on the lower half-
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plane of p0 giving a null result. For x0 , 0, on the other hand, we have the

contribution of the residues at the poles:

p0 5 6 v 5 6 ! -
p 2 2 m 2 if

-
p 2 $ m 2

p0 5 6 i v 8 5 6 i ! m 2 2
-

p 2 if
-

p 2 # m 2

^{(P 2 m 2) 2 1
ad }(x) 5

2 2 p
(2 p ) n /2 # d n 2 1p ei

-
p ?

-
r F sin v x0

v
Q (

-
p 2 2 m 2)

1
sh v 8x0

v 8
Q ( m 2 2

-
p 2) G

5
2 1

(2 p ) n /2 # d n 2 1p ei
-

p ?
-
r sin V x0

V
(25)

where V 5 (
-

p 2 2 m 2 1 i0)1/2 [cf. (15)] ( Q is Heaviside’ s function). Finally,

using (11) and formula 6.737-5 (p. 761) of Gradshteyn and Ryzhik (1980),

we obtain

^{(P 2 m 2) 2 1
ad }(x) 5 p m n /2 2 1 Q1/2(1 2 n /2)

2 (1 2 n /2( m Q 1/2
2 ) (26)

For the retarded part we get a similar result, with the substitution x0 ® 2 x0.

Again, we see that the Wheeler propagator has support inside the light-

cone, but instead of a Bessel function of the first kind, we have now a Bessel
function of the second kind.

Note also that for the tachyon, the Wheeler function is not half Feynman

and half its complex conjugate. This fact is due to the presence of the

imaginary poles (at p0 5 6 i v 8).

4. FIELDS WITH COMPLEX MASS PARAMETERS

The decomposition in Klein±Gordon factors of a higher order equation

often leads to complex mass parameters. Equation (1) is an example. The

constituent fields obey (2). A simple higher order equation such as (3) presents

the same behavior. Of course for a real equation the masses come in complex

conjugate pairs. We consider

(N 2 M 2) f 5 0, M 5 m 1 i m (m . 0) (27)

This type of equation has been analyzed elsewhere (Bollini and Oxman,
1992). The Green functions are inverses of P 1 M 2 5 V 2 2 p 2

0, where

V 5 (
-

p 2 1 M 2)1/2. When
-

p 2 varies from 0 to ` the two poles at p0 6 V
move on a line contained in a horizontal band of width 6 i m , centered at the

real axis.
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The retarded Green function is obtained with a p0 integration that runs

parallel to the real axis, with Im p0 . | m | . For the advanced solution, the

integration runs below both poles (Im p0 , 2 | m | ).
With this procedure we get [compare with (26)]

^{(P 1 M 2) 2 1}(x) 5
p
2

M n /2 2 1Q 1/2(1 2 n /2)
2 )( n 2 3)/2(MQ1/2

2 ) (28)

Now we have the general result: The Wheeler function propagates inside

the light-cone for any value of the mass, real (bradyons), imaginary (tachyons),

or complex (M 5 m 1 i m ).

In the case of complex masses, a natural definition for the Feynman
propagator is obtained by a p0 integration along the real axis. Then it is not

difficult to see that

^{(P 1 M 2) 2 1
F }(x) 5 ! p

2
r (3 2 n )/2 #

`

0

dk k ( n 2 1)/2 1 sin V | t |
V

2 i sgn m
cos V | t |

V 2 )( n 2 3)/2(rk) (29)

The first term in the right-hand side is the Wheeler function. The second
term corresponds to a positive loop around the pole in the upper half-plane

and a negative loop around the pole in the lower half-plane.

If we say that the conjugate Feynman function (not the complex conju-

gate) is obtained by changing the signs of both loops, then the Wheeler

function is also half Feynman and half its conjugate.

The term in cos V | l | can be read in Gradshteyn and Ryzhik (1980,
6.735-6).

5. ASSOCIATED VACUUM

It is well known that the perturbative solution to the quantum equation

of motion leads to a Green function which is the vacuum expectation value
of the chronological product of field operators (VEV). Furthermore, when

the quanta are not allowed to have negative energies, the VEV turns out to

be Feynman’ s propagator.

However, when the energy-momentum vector is spacelike the sign of

its energy component is not Lorentz invariant. It is then natural to have

symmetry between positive and negative energies. It has been shown that
under this premise, the VEV is a Wheeler propagator (Barci et al., 1993,

1994b).

To see clearly the origin of the difference between both types of propaga-

tors, we are going to compare the usual procedure with the symmetric one.
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A quantized Klein±Gordon field can be written as

w (x) 5
1

(2 p )3/2 # d 3k

! 2 v
[a (

-
k )e ik? x 1 a +(

-
k )e 2 ik ? x] (30)

where

[a (
-

k ), a +(
-

k 8)] 5 d (
-

k 2
-

k 8); v 5 ! -
k 2 1 m 2

For simplicity, we are going to consider a single (discretized) degree

of freedom.

The raising and lowering operators obey

[a, a +] 5 1 (31)

The energy operator is

h 5
v
2

(aa+ 1 a +a) 5 v a + a 1
v
2

5 h0 1
v
2

Usually, the energy is redefined to be h0. The vacuum then obeys

h0 | 0 & 5 0 (32)

It is a consequence of (31) and (32) that

^ 0 | aa+ | 0 & 5 1, ^ 0 | a + a | 0 & 5 0 (33)

On the other hand, the symmetric vacuum is defined to be the state that

has zero ª true energyº :

h | 0 & 5
v
2

(aa+ 1 a + a) | 0 & 5 0 (34)

Equations (31) and (34) imply

^ 0 | aa+ | 0 & 5
1

2
, ^ 0 | a + a | 0 & 5 2

1

2
(35)

Let as assume, for the sake of the argument, that we define a ª ceilingº

state (as opposed to a ground state):

a + | 0 & 5 0 (36)

Equations (31) and (36) give

^ 0 | aa+ | 0 & 5 0, ^ 0 | a + a | 0 & 5 2 1 (37)

The usual normal case, equation (33), leads to the Feynman propagator.

The ª invertedº case, equated (37), leads to its complex conjugate. Then (35),

which is one-half of (33) and one-half of (37), leads to one-half of the Feynman
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function and one-half of its conjugate. This is the Wheeler propagator defined

in Section 1.

The space of states generated by successive applications of a and a +

on the symmetric vacuum has an indefinite metric.

The scalar product can be defined by means of the holomorphic represen-

tation (Faddeev and Slavnov, 1970). The functional space is formed by

analytic functions f (z), with the scalar product

^ f, g & 5 # dz dz e 2 zz f (z) g (z) (38)

or, in polar coordinates,

^ f, g & 5 #
`

0

d r r e 2 r 2 #
2 p

0

d f f (z)g (z) (39)

The raising and lowering operators are represented by

a + 5 z, a 5
d

dz
(40)

The symmetric vacuum obeys

1 d

dz
z 1 z

d

dz 2 f0 5 1 1 1 2z
d

dz 2 f0 5 0

whose normalized solution is

f0 5 (2 p 3/2) 2 1/2z 2 1/2

The energy eigenfunctions are

fn 5 F 2 p G 1 n 1
1

2 2 G
2 1/2

z 2 1/2z n (41)

6. UNITARITY

In QFT, the equations of motion for the states of a system of interacting

fields are formally solved by means of the evolution operator

U (t, t0) | t0 & 5 | t &

The interactions between the quanta of the fields is supposed to take

place in a limited region of space-time. The initial and final times can be
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taken to be t0 ® 2 ` and t ® 1 ` , thus defining the S-operator:

S 5 U ( 1 ` , 2 ` )

We do not intend to discuss the possible problems of such a definition.
Here we are only interested in its relation to Wheeler propagators.

Usually, the initial and final states are represented by free particles.

However, when Wheeler fields are present, their quanta either mediate interac-

tions between other particles or they end up at an absorber. This circunstance

had been pointed out by Wheeler and Feynman (1945, 1949). In consequence,

the S-matrix not only contains the initial and final free particles, but it also
contains the states of the absorbers. Through the latter we can determine the

physical quantum numbers of the Wheeler virtual ª asymptotic particles.º For

these reasons, even if the initial and final states do not contain any Wheeler

free particle, for the verification of perturbative unitarity it is necessary to

take them into account.

We shall ilustrate this point with some examples. Let us consider four
scalar fields f s(s 5 1, . . . , 4) obeying Klein±Gordon equations with mass

parameters m 2
s and the interaction L 5 l f 1 f 2 f 3 f 4. They can be written as

in (30).

Unitarity implies

SS + 5 1

or, with S 5 1 2 T,

T 1 T + 5 TT +

We introduce the initial and final states and also a complete descomposi-

tion of the unit operator:

^ a | T 1 T + | b & 5 # d s g ^ a | T | g & ^ g | T + | b &

For the perturbative development

T 5 o
n

l nTn

^ a | Tn 1 T 1
n | b & 5 o

n 2 1

s 5 1 # d s g ^ a | Tn 2 s| g & ^ g | T 1
s | b & (42)

In particular, T0 5 0 and T1 5 pure imaginary.

For n 5 2

^ a | T2 1 T 1
2 | b & 5 # d s g ^ a | T1 | g & ^ g | T 1

1 | b & (43)
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where we will take T1 5 i f 1 f 2 f 3 f 4. Here f 1 and f 2 are supposed to be

normal fields whose states can be obtained from the usual vacuum, and

| a & 5 a 1
2 a 1

1 | 0 & , | b & 5 a 1
28a

1
18 | 0 &

On the other hand, for f 3 and f 4 we leave open the possibility of a

choice between the usual vacuum or the symmetric one.

The left-hand side of (43) comes from the second-order loop formed

with the convolution of a propagator for f 3 and another for f 4. When both

fields are normal, we have the convolution of two Feynman propagators,
where the real part is

Re[(P 1 m 2
3 2 i0) 2 1 * (P 1 m 2

4 2 i0) 2 1]

5 (P 1 m 2
3)

2 1 * (P 1 m 2
4) 2 p 2 d (P 1 m 2

3) * d (P 1 m 2
4)

In the physical region (P , 0) both terms in the r.h.s. give the same

contribution:

Re[(P 1 m 2
3 2 i0) 2 1 * (P 1 m 2

4 2 i0) 2 1]

5 2 (P 1 m 2
3)

2 1 * (P 1 m 2
4)

2 1 (P , 0) (44)

Equation (44) implies that the left-hand side of (43) for Feynman particles

is twice the value corresponding to Wheeler particles.
The relation (43) is known to be valid for normal fields, so there is no

point in proving it here. We are going to show where the relative factor 2

comes from.

The decomposition of unity for normal fields is

I 5 # d s g | g & ^ g |

5 | 0 & ^ 0 | 1 # d n 2 1q a +(
-

q ) | 0 & ^ 0 | a (
-

q )

1 # d n 2 1q1 d n 2 1 q2
1

! 2
a + (

-
q 1)a 1 (

-
q 2) | 0 & ^ 0 | a (

-
q 1)a (

-
q 2)

1

! 2
1 ? ? ? (45)

Then, for the T1 matrix we have

^ a | T1 | g & 5 ^ 0 | a1(
-

p ) f 1(x) | 0 & ^ 0 | a2(
-

p ) f 2(x) | 0 &

3 ^ 0 | f 3(x)a 1
3 (

-
q 3) | 0 & ^ 0 | f 4(x)a 1

4 (
-

q 4) | 0 & (46)

where an integration over x space is understood.
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When the fields are expressed in terms of the operators a (q) and a +(q)

as in equation (32), we obtain

^ a | T1 | g & 5
(2 p ) n

(2 p )2( n 2 1)

d ( p 2 q3 2 q4)

4 ! v 1 v 2 v 3 v 4

( p 5 p1 1 p2) (47)

and

^ g | T1 | b & 5
(2 p ) n

(2 p )2( n 2 1)

d (q3 1 q4 2 p8)

4 ! v 81 v 82 v 3 v 4

( p8 5 p 81 1 p 82) (48)

Multiplying together (47) and (48) and adding all possible | g & ^ g | (all
-

q 3 and
-

q 4), we get

# d s g ^ a | T1 | g & ^ g | T 1
1 | b &

5
d ( p 2 p8)

16(2 p )2 n 2 4 ! v 1 v 2 v 81 v 82 # d
-

q
d ( p0 2 v 3(

-
q ) 2 v 4 (

-
p 2

-
q ))

v 3(
-

q ) v 4(
-

p 2
-

q )
(49)

This result coincides with (43)(l.h.s.) when the p 0-convolution is car-

ried out.

Suppose now that one of the fields, say f 4, has the Wheeler function

as propagator. Instead of (44) we have

Re[(P 1 m 2
3 2 i0) 2 1 * (P 1 m 2

4)
2 1] 5 (P 1 m 2

3)
2 1 * (P 1 m 2

4)
2 1 (50)

which is half the value of (44).

To evaluate the matrix ^ T1 & for this case we note that the descomposition

of unity for the states of f 4 (with an indefinite metric) is now

I 5 # d s g | g & ^ g |

5 | 0 & ^ 0 | 1 # d n 2 1q ! 2a +(
-

q ) | 0 & ^ 0 | a (
-

q ) ! 2

2 # d n 2 1q ! 2a (
-

q ) | 0 & ^ 0 | a +(
-

q ) ! 2 1 ? ? ? (51)

The normalization factors come from the VEV quoted in Section 5,

equation (35). It is not necessary to evaluate again the matrix element (46).

Its last vacuum expectation value has now a factor 1/2 from (35) and a factor
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! 2 form the normalization in (78). When the matrixes for T1 and T 1
1 are

multiplied together, we get an extra factor ( ! 2/2)2 5 1/2, as should be for

unitarity to hold.
When both fields f 3 and f 4 are of the Wheeler type, we get for the

convolution of the respective Wheeler propagators the same result (50).

The matrix element of T1 gains now two factors ! 2/2, i.e., a factor

1/2. When we multiply ^ T1 & ^ T 1
1 & we get a factor 1/2 ? 1/2 5 1/4, and we

seem to be in trouble with unitarity. However, in this case a new matrix

contributes to ^ T1 & . It is

^ 0 | a1(
-

p 1) f 1(x)a 1
1 (

-
q 1)a

1
1 (

-
q 81) | 0 &

3 ^ 0 | a2(
-

p 2) f 2(x)a 1
2 (

-
q 2)a

1
2 (

-
q 82) | 0 &

3 ^ 0 | f 3(x)a 1
3 (

-
q 3) | 0 & ^ 0 | f 4(x)a 1

4 (
-

q 4) | 0 & (52)

(52) is only possible when both f 3 and f 4 are associated with symmetric

vacua.

For the first matrix factor we have:

^ 0 | a1(
-

p 1) f 1(x)a 1
1 (

-
q 1)a

1
1 (

-
q 81) | 0 &

5 d ( p1 2 q1)
eiq8

1y

! 2 v 1(q 81)
1 d ( p1 2 q 81)

e 2 iq1x

! 2 v 1(q1)
(53)

A similar matrix factor from ^ T 1
1 & gives

^ 0 | a1(
-

q 1)a1(
-

q 81) f 1( y)a1(
-

p 81) | 0 &

5 d ( p81 2 q 81)
e iq1y

! 2 v 1(q1)
1 d ( p81 2 q1)

e iq8
1y

! 2 v 1(q 81)
(54)

When we multiply together (53) and (54), the crossed terms do not

contribute [ d ( p1 2 p 81) 5 0]. The other two terms give equal contributions.

A similar evaluation can be done for the second factor of (52) and the

corresponding factor of ^ T + & . For this reason we are going to keep only the

first terms from (53) and (54) (multiplied with the appropriate constants):

^ a | T1 | g & 5
2

(2 p )2( n 2 1) d ( p1 2 q1)
e 2 iq1x

! 2 v 1(q1)
d ( p2 2 q2)

3
e 2 iq2x

! 2 v 2(q2)

e iq3x

2 ! 2 v 3(q3)

e iq4x

2 ! 2 v 4(q4)
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and after performing the x integration, we have

^ a | T1 | g & 5
(2 p ) n

2(2 p )2( n 2 1)

d ( 2 q 81 2 q 82 1 q3 1 q4) d ( p1 2 q1) d ( p2 2 q2)

4 ! v 81 v 82 v 3 v 4

Analogously,

^ g | T 1
1 | b & 5

(2 p ) n

2(2 p )2( n 2 1)

d (q1 1 q2 2 q3 2 q4) d ( p81 2 q 81) d ( p82 2 q 82)

4 ! v 81 v 82 v 3 v 4

The sum * d s g ^ a | T1 | g & ^ g | T 1
1 | b & corresponds to an integration on

-
q 1,

-
q 81,

-
q 2,

-
q 82. It is easy to see that after this operations we get one-fourth

of (49), thus completing the proof of unitarity for the proposed example.

The case in which f 3 and f 4 obey a KG equation with complex mass

parameters can be treated in an analogous way,

Summarizing: whatever the case, any proof of unitarity for normal fields

based on (42) and the decomposition of unity given by (45) can be converted

into a proof of unitarity for fields with symmetric vacuum with the use of
the decomposition (47).

7. DISCUSSION

We have shown that the Wheeler propagator has several interesting

properties. In the first place we have the fact that it implies only virtual

propagation. The on-shell d -function, a solution of the free equation, is absent.

No quantum of the field can be found in a free state. The function is always

zero for spacelike distances. The field propagation takes place inside the
light-cone. This is true for bradyons, but is also true for fields that obey

Klein±Gordon equations with the wrong sign of the mass term and even for

complex mass fields. The usual vacuum state is annihilated by the descending

operator a, and gives rise to the Feynman propagator. The Wheeler Green

function is associated with the symmetric vacuum. This vacuum is not annihi-

lated by a, but rather by the ª true energyº operator, a symmetric combination
of annihilation and creation operators. The space of states generated by a
and a + has an indefinite metric. There are known methods to deal with this

kind of space. In particular we can define and handle all scalar products by

means of the ª holomorphic representationº (Faddeev and Slavnov, 1970).

Due to the absence of asymptotic free waves, no Wheeler particle will appear

in external legs of the Feynman diagrams. Only the propagator will appear
explicitly, associated with internal lines. So the theoretical tools to deal with

matrix elements in spaces with indefinite metric will not in actual fact be

necessary for the evaluation of cross sections. However, the decomposition

of unity for spaces with indefinite metric is needed for the proof of another
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important point. The inclusion of Wheeler fields and the corresponding

Wheeler propagators does not produce any violation of unitarity when only

normal particles are found in external legs of Feynman diagrams.
To complete the theoretical framework for a rigorous mathematical

analysis, it is perhaps convenient to notice that the propagators we have

defined are continuous linear functionals on the space of the entire analytic

functions rapidly decreasing on the real axis. They are known in general

as ª tempered ultradistributionsº (Sebastiao e Silva, 1958; Hasumi, 1961;

Morimoto, 1978a, b; Bollini et al., 1994). The Fourier-transformed space
contains the usual distributions and also admits exponentially increasing

functions (distributions of the exponential type) (see also Bollini et al., 1996).

We must also answer the important question, What are the possible uses

of the Wheeler propagators?

In the first place we would like to stress the fact that the quanta of

Wheeler fields cannot appear as free particles. They can only be detected as
virtual mediators of interactions. It is in the light of this observation that we

must look for probable applications.

We will first take the case of a tachyon field. It is known that unitarity

can not be achieved, provided we accept the implicit premise that only

Feynman propagators are to be used, with the consequent presence of free
tachyons. This work can also be considered to be a proof of the incompatibility

of unitarity and the Feynman propagator for tachyons. Furthermore, this

procedure fits naturally into the treatment for complex mass fields of Section

5. Higgs problems could be related to this case. The scalar field of the

standard model behaves as a tachyon field for low amplitudes. The fact

that the Higgs has not yet been observed suggests the posibility that the
corresponding propagator might be a Wheeler function (Bollini and Rocca,

1997a). It is easy to see that this assumption does not spoil any of the

experimental confirmations of the model (on the contrary, it adds the nonob-

servation of the free Higgs).

Another possible application appears in higher order equations. Those

equations appear, for example, in some supersymmetric models for higher
dimensional spaces (Bollini and Giambiagi, 1985). They can be decomposed

into Klein±Gordon factors with general mass parmeters. The corresponding

fields have Wheeler functions as propagators. It is interesting that there are

models of higher order equations, coupled to electromagnetism, which can

be shown to be unitary, no matter how high the order is (Bollini et al., 1997).

The acceptance of tachyons as Wheeler particles might be of interest
for bosonic string theory. With the symmetric vacuum we can show that the

Virasoro algebra turns out to be free of anomalies in spaces of arbitrary

number of dimensions (Bollini and Rocca, 1997b). The excitations of the

string are Wheeler functions in this case.



The Wheeler Propagator 2893

ACKNOWLEDGMENT

This work was partially supported by Consejo Nacional de Investigaci-

ones CientiÂficas and ComisioÂn de Investigaciones CientiÂficas de la Pcia. de
Buenos Aires, Argentina.

REFERENCES

Barci, D. G., Bollini, C. G., and Rocca, M. C. (1993). Nuovo Cimento, 106A , 603.

Barci, D. G., Bollini, C. G., Oxman, L. E., and Rocca, M. C. (1994a). International Journal

of Modern Physics A, 9, 4169.

Barci, D. G., Bollini, C. G., and Rocca, M. C. (1994b). International Journal of Modern Physics

A, 9, 3497.

Bochner, S. (1939). Lectures on Fourier Integrals, Princeton University Press, Princeton, New

Jersey, p. 235.

Bollini, C. G., and Giambiagi, J. J. (1985). Physical Review D, 32, 3316.

Bollini, C. G., and Giambiagi, J. J. (1996). Physical Review D, 53, 5761.

Bollini, C. G., and Oxman, L. E. (1992). International Journal of Modern Physics A, 7, 6845.

Bollini, C. G., and Rocca, M. C. (1997a). Nuovo Cimento, 110A , 363.

Bollini, C. G., and Rocca, M. C. (1997b). Nuovo Cimento, 110A , 353.

Bollini, C. G., Oxman, L. E., and Rocca, M. C. (1994). Journal of Mathematical Physics,

35, 4429.

Bollini, C. G., Civitarese, O., De Paoli, A. L., amd Rocca, M. C. (1996). Journal of Mathematical

Physics, 37, 4235.

Bollini, C. G., Oxman, L. E., and Rocca, M. C. (1997). International Journal of Modern

Physics A, 12, 2915.

Dirac, P. A. M. (1938). Proceedings of the Royal Society of London A, 167 , 148.

Erdelyi, A., ed., Tables of Integral Transforms, Vol. 2, McGraw-Hill, New York, 1954.

Faddeev, L. D., and Slavnov, A. A. (1970). Gauge Fields. Introduction to Quantum Theory,

Benjamin Cummings.

Gradshteyn, S., and Ryzhik, I. M. (1980). Tables of Integrals, Series, and Products, Academic

Press, New York.

Guelfand, I. M., and Shilov, G. E. (1972). Les Distributions , Vol. 1, Dunod, Paris.

Hasumi, M. (1961). Tohoku Mathematical Journal , 13, 94.

Morimoto, M. (1978a). Proceedings of the Japan Academy. Science , 51, 83.

Morimoto, M. (1978b). Proceedings of the Japan Academy. Science , 51, 213.

Sebastiao e Silva, J. (1958). Mathematische Annalen , 136 , 38.

Wheeler, J. A., and Feynman, R. P. (1945). Reviews of Modern Physics, 17, 157.

Wheeler, J. A., and Feynman, R. P. (1949). Reviews of Modern Physics, 21, 425.


